Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction.

نویسندگان

  • Sri Rama Koti Ainavarapu
  • Arun P Wiita
  • Lorna Dougan
  • Einar Uggerud
  • Julio M Fernandez
چکیده

It is experimentally challenging to directly obtain structural information of the transition state (TS), the high-energy bottleneck en route from reactants to products, for solution-phase reactions. Here, we use single-molecule experiments as well as high-level quantum chemical calculations to probe the TS of disulfide bond reduction, a bimolecular nucleophilic substitution (S N2) reaction. We use an atomic force microscope in force-clamp mode to apply mechanical forces to a protein disulfide bond and obtain force-dependent rate constants of the disulfide bond reduction initiated by a variety of nucleophiles. We measure distances to the TS or bond elongation (Delta x), along a 1-D reaction coordinate imposed by mechanical force, of 0.31 +/- 0.05 and 0.44 +/- 0.03 A for thiol-initiated and phosphine-initiated disulfide bond reductions, respectively. These results are in agreement with quantum chemical calculations, which show that the disulfide bond at the TS is longer in phosphine-initiated reduction than in thiol-initiated reduction. We also investigate the effect of solvent environment on the TS geometry by incorporating glycerol into the aqueous solution. In this case, the Delta x value for the phosphine-initiated reduction is decreased to 0.28 +/- 0.04 A whereas it remains unchanged for thiol-initiated reduction, providing a direct test of theoretical calculations of the role of solvent molecules in the reduction TS of an S N2 reaction. These results demonstrate that single-molecule force spectroscopy represents a novel experimental tool to study mechanochemistry and directly probe the sub-ångström changes in TS structure of solution-phase reactions. Furthermore, this single-molecule method opens new doors to gain molecular level understanding of chemical reactivity when combined with quantum chemical calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Force-activated reactivity switch in a bimolecular chemical reaction.

The effect of mechanical force on the free-energy surface that governs a chemical reaction is largely unknown. The combination of protein engineering with single-molecule force-clamp spectroscopy allows us to study the influence of mechanical force on the rate at which a protein disulfide bond is reduced by nucleophiles in a bimolecular substitution reaction (S(N)2). We found that cleavage of a...

متن کامل

Mechanochemistry: one bond at a time.

Single-molecule force-clamp spectroscopy offers a novel platform for mechanically denaturing proteins by applying a constant force to a polyprotein. A powerful emerging application of the technique is that, by introducing a disulfide bond in each protein module, the chemical kinetics of disulfide bond cleavage under different stretching forces can be probed at the single-bond level. Even at for...

متن کامل

Kinetic measurements on single-molecule disulfide bond cleavage.

We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the A...

متن کامل

Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy

Recent developments in piconewton instrumentation allow the manipulation of single molecules and measurements of intermolecular as well as intramolecular forces. Dextran filaments linked to a gold surface were probed with the atomic force microscope tip by vertical stretching. At low forces the deformation of dextran was found to be dominated by entropic forces and can be described by the Lange...

متن کامل

Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure.

We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 ± 0.2 nN, which is in good agreement with previous measurements. We then study systematic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 20  شماره 

صفحات  -

تاریخ انتشار 2008